Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38693729

RESUMO

BACKGROUND: Panax ginseng (PG) is a plant that contains ginsenosides, which are considered adaptogens that confer cellular protection. However, the impact of PG on pituitary-ovarian dysfunction and subsequent infertility is unknown. This study investigated the hypothesis that PG would attenuate pituitary-ovarian dysfunction associated with mobile phone's Radiofrequency Electromagnetic Radiation (RF-EMR) in experimental rat models and the possible involvement of a cAMP Response Element Modulator (CREM)-dependent pathway. METHODS: Twenty adult female Wistar rats were divided randomly into four groups, each consisting of five rats. The control group was administered a vehicle (distilled water) orally, while the P. ginseng group received 200 mg/kg of P. ginseng extract orally. The RF-EMR group was exposed to 900MHz radiation, and the RF-EMR + PG group was exposed to the same radiation while also being treated with 200 mg/kg of P. ginseng orally. These treatments were administered daily for a period of 56 days. RESULTS: The RF-EMR group exhibited significant reductions in serum levels of LH, FSH, estradiol, and progesterone compared to the control group. Moreover, levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were significantly lower in the RF-EMR group compared to the control. Additionally, there was a notable decrease in the expression of the CREM gene, accompanied by disrupted pituitary/ovarian morphology in the RF-EMR group compared to the control. However, the administration of PG mitigated these changes. CONCLUSION: The findings of this study indicate that P. ginseng extract shields against pituitary-ovarian impairment linked to RF-EMR exposure from cell phones by boosting antioxidant capacity and promoting the CREM-dependent pathway.

2.
BMC Neurosci ; 24(1): 62, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996797

RESUMO

Polycystic ovarian syndrome (PCOS) is a known endocrine disorder that has affected many women of childbearing age, and is accompanied by various neurodegenerative conditions. Hence, this study investigates the impact of butyrate in reversing hypothalamic-related disorder, possibly through γ aminobutyric acid (GABA) in a rat model of PCOS. Eight-week-old female Wistar rats were allotted into four groups (n = 5), which include control, butyrate, letrozole, and letrozole + butyrate groups. PCOS was induced by administering 1 mg/kg of letrozole (oral gavage) for 21 days. After confirmation of PCOS, 200 mg/kg of butyrate (oral gavage) was administered for 6 weeks. Rats with PCOS were characterized by elevated levels of plasma insulin and testosterone. Increases in plasma and hypothalamic triglyceride levels, inflammatory biomarker (SDF-1), apoptotic marker (caspase-6), and decreased plasma GnRH were observed. Additionally, a decrease in hypothalamic GABA was revealed. Nevertheless, the administration of butyrate attenuated these alterations. The present study suggests that butyrate ameliorates hypothalamic inflammation in an experimental model of PCOS, a beneficial effect that is accompanied by enhanced GABA production.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/induzido quimicamente , Letrozol , Ácido Butírico/efeitos adversos , Ratos Wistar , Ácido gama-Aminobutírico , Modelos Teóricos , Modelos Animais de Doenças
3.
Drug Chem Toxicol ; 46(6): 1154-1161, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36303411

RESUMO

Cadmium (Cd) exposure induces kidney damage by mediating oxidative stress and inflammation. In this study, the role of Crassocephalum rubens-gold nanoparticles (C. rubens-AuNPs) in down-regulating kidney injury molecules-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) genes and inhibiting oxidative stress in Cd-induced kidney damage in rats was investigated. Thirty male Wistar rats were distributed randomly into six groups (n = 5). Group I served as control, while groups II, III, IV, and V rats were administered with 20 mg/kg b.w. cadmium chloride (CdCl2) for five consecutive days. Groups III, IV, and V rats were treated, 24 h after the last dose of CdCl2, with silymarin, 5 mg/kg and 10 mg/kg C. rubens-AuNPs, respectively, for 14 days. Group VI rats received 10 mg/kg C. rubens-AuNPs only for 14 days. Animals were sacrificed 24 h after the last dose of the treatment. Biochemical parameters such as kidney function markers, biomarkers of nephrotoxicity, and oxidative stress markers were assayed. Results indicated that 20 mg/kg b.w. CdCl2 caused kidney damage, as evidenced by significant (p < 0.05) increase in the levels of serum urea and creatinine, malondialdehyde, reduced level of superoxide dismutase (SOD), and increased mRNA expression of the kidney injury biomarkers (KIM-1 and NGAL genes), when compared with the control. However, these changes were attenuated by both doses of C. rubens-AuNPs when compared with Cd-induced nephrotoxic rats. It can be suggested that C. rubens-AuNPs have the potential to ameliorate kidney damage induced by Cd via oxidative stress inhibition and down-regulation of KIM-1/NGAL genes.


Assuntos
Nefropatias , Nanopartículas Metálicas , Ratos , Masculino , Animais , Lipocalina-2/genética , Lipocalina-2/metabolismo , Cádmio/toxicidade , Ouro , Ratos Wistar , Nanopartículas Metálicas/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Rim/metabolismo , Estresse Oxidativo , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...